
ELSEVIER

Contents lists available at ScienceDirect

Journal of Photochemistry and Photobiology A: Chemistry

journal homepage: www.elsevier.com/locate/jphotochem

Characterization of the hydroperoxyl/superoxide anion radical ($HO_2^{\bullet}/O_2^{\bullet-}$) formed from the photolysis of immobilized TiO_2 in a continuous flow

Bum Gun Kwon*

Environmental & Whole Information System (E&WIS), #406 Mario Tower, Guro-3-dong, Guro-gu, Seoul 152-848, Republic of Korea

ARTICLE INFO

Article history: Received 3 July 2007 Received in revised form 25 February 2008 Accepted 8 May 2008 Available online 15 May 2008

Keywords: Immobilized TiO₂ Hydroperoxyl/superoxide anion radical Kinetic method Continuous flow injection

ABSTRACT

In this study, the steady-state concentrations of $HO_2^{\bullet}/O_2^{\bullet-}$ formed from the photocatalysis of immobilized TiO₂ were investigated quantitatively by using the kinetic method with a continuous flow injection. In air-equilibrated water, the concentration of $HO_2^{\bullet}/O_2^{\bullet-}$ was typically $1.01~(\pm 0.08) \times 10^{-9}~M$ at pH 5.80 in the absence of buffers. The reduction of O_2 by photo-induced electrons (e_{cb}^-) was increased by the concentration of O_2 (from 0 to 0.38 mM). However, in the presence of buffer anions the concentration of $HO_2^{\bullet}/O_2^{\bullet-}$ was gradually decreased by increasing pH. This indicates that the suppression of $HO_2^{\bullet}/O_2^{\bullet-}$ in the presence of buffer ions is attributed to the blocking of active sites of the immobilized TiO₂ photocatalyst and to certain processes, that is, the reaction between $HO_2^{\bullet}/O_2^{\bullet-}$ and $^{\bullet}OH~(and/or~h_{vb}^{\bullet})$. Furthermore, the concentration of $HO_2^{\bullet}/O_2^{\bullet-}$ increased with the increasing concentrations of H_2O_2 and oxalate, and then on the further addition of H_2O_2 (>10 mM) and oxalate (>2 mM), the concentration of $HO_2^{\bullet}/O_2^{\bullet-}$ reached steady values. These results strongly suggest that $HO_2^{\bullet}/O_2^{\bullet-}$ formed on TiO₂ photocatalysis migrates into the water bulk, and this study can contribute significantly to the body of knowledge regarding $HO_2^{\bullet}/O_2^{\bullet-}$ at very low levels.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Photocatalytic applications of TiO₂ have been of major interest in the area of wastewater treatment, especially when the wastewater contains a wide variety of undesirable pollutants [1-3]. In the previous studies of the TiO₂ photolysis, reactive intermediates such as the hydroxyl radical (*OH) [4-13], the hydroperoxyl/superoxide anion radical $(HO_2^{\bullet}/O_2^{\bullet-})$ [12–22], singlet oxygen $(^1O_2)$ [17–22], and hydrogen peroxide (H2O2) [15,20] have been identified and their formation mechanisms have also been proposed. While the hydroxyl radicals produced on hydrated TiO₂ particles are fairly well investigated in a series of degradation reactions with pollutant molecules [4-13,23,24], much less attention has been paid to the role of HO₂•/O₂•-. Recently, several studies have paid much more attention to the behaviors of HO₂•/O₂•- produced through the electron transfer from the TiO_2 surface to dissolved oxygen (O_2) , since the formation of HO₂•/O₂•- is important process to determine the efficiency of TiO₂ photocatalytic reactions by means of the decrease of electron-hole (e^--h^+) recombination [15,16,24].

E-mail address: kwonbg0@daum.net.

In view of this point, the physicochemical features on $HO_2^{\bullet}/O_2^{\bullet-}$ formation, i.e., migrated (or drift) $HO_2^{\bullet}/O_2^{\bullet-}$, are very important to explore the TiO_2 photocatalytic activity. In addition, a large amount of attention has been focused on the potential role of $HO_2^{\bullet}/O_2^{\bullet-}$ in eliminating various pollutants in water including atrazine, phenols, and chlorophenol [25–29]. Nevertheless, further investigated is warranted concerning the generation and deactivation of $HO_2^{\bullet}/O_2^{\bullet-}$, as well, quantitative information is needed [15–17,19,24].

Although a number of studies have been conducted to investigate $HO_2^{\bullet}/O_2^{\bullet-}$ formation in the TiO_2 photolysis, the basic mechanism is considered to represent the best reaction model for explaining the fate of $HO_2^{\bullet}/O_2^{\bullet-}$ in an aqueous phase as follows [12,16,30–35]:

$$TiO_2 + h\nu (< 400 \text{ nm}) \rightarrow h_{vb}^+ + e_{cb}^-$$
 (I)

$$H_2O(orOH^-) + h_{vb}^+ \rightarrow {}^{\bullet}OH + H^+$$
 (II)

$$O_2 + e_{cb}^- \rightarrow O_2^{\bullet -} \tag{III}$$

$$O_2^{\bullet -} + H^+ \leftrightarrow HO_2^{\bullet}$$
 (IV)

$$O_2^{\bullet -} + h_{vb}^{+} \rightarrow O_2 \tag{V}$$

In the aqueous phase, the photolysis of TiO_2 leads to the formation of a valence band hole (h_{vb}^+) and a conduction band electron (e_{cb}^-) in reaction (I). The hydroxyl radical (${}^{\bullet}OH$) is produced from H_2O (or

^{*} Present address: Biofilm Engineering Laboratory, School of Chemical Engineering, College of Engineering, Seoul National University, San 56-1, Sillim-dong, Gwanak-gu, Seoul 151-742, Republic of Korea. Tel.: +82 2 880 8941; fax: +82 2 876 8911

OH $^-$) on the hydrated TiO $_2$ surface by trapping an h $_{vb}^+$ (reaction (II)). Subsequently, the oxygen molecules adsorbed on the surface of air-saturated TiO $_2$ act as electron scavengers and combine with e $_{cb}^-$ to form O $_2$ • $^-$ in the reaction (III), which is in an acid-base equilibrium (reaction (VI); p K_a (HO $_2$ •)=4.8±0.1) [36]. The reduction of O $_2$ by e $_{cb}^-$ (reaction (III)) can exclude the accumulation of the electrons on the TiO $_2$ particles as well as e $^-$ -h $^+$ recombination. However, h $_{vb}^+$ remaining on the TiO $_2$ surface is reported to eliminate O $_2$ • $^-$ (reaction (V)) [32,33]. Thus, the formation of HO $_2$ •/O $_2$ • $^-$ has been considered as an intermediate of the ensuing reactions of free radicals in air-saturated water during the photolysis of TiO $_2$.

Thus far, several methods have been developed for the detection of HO₂•/O₂•- formed in illuminated TiO₂ suspensions. For an examination of active species produced on TiO₂ surfaces, the electron paramagnetic resonance (EPR) technique has been most commonly used at a very low temperature or at room temperature [5,12,37,38]. However, the EPR technique has only focused on the detection of HO₂•/O₂•-, rather than on the determination of the absolute concentration of HO₂•/O₂•-. Nosaka et al. [14,15] and Hirakawa et al. [24,33] have recently developed a chemiluminescence (CL) method to detect reactive oxygen species formed on a TiO₂ photocatalyst. They dropped luminol as a specific probe on a TiO₂ aqueous suspension or on TiO₂ film. However, this method has a shortcoming, in that reactions with various reactive oxygen species without the separation of HO₂•/O₂•- occur; thus only an estimated (or calculated) concentration of HO₂•/O₂•- is reported. In contrast, Ishibashi et al. [16,19] applied this method using luminol or MCLA (2-methyl-6-(p-methoxyphenyl)-3,7-dihydroimidazo-[1,2-a]pyrazin-3-one) as a specific probe to TiO₂ film-type photocatalysts in air and in water. To determine the absolute number of $O_2^{\bullet-}$, the photon emission standards were measured from the luminol oxidation initiated with the addition of 0.1% hydrogen peroxide in a standard cell, and the quantitative number of O2 •- was then estimated by comparing the photon number from the standard photon emission of luminol with that emitted from the reaction between photo-generated $O_2^{\bullet-}$ and luminol [19]. However, there are issues with an interfering effect such as H₂O₂-induced CL in the presence of metal and additionally required experimental such as a standard photon emission. Other issues involve the selectivity of luminol from various reactive oxygen species during TiO₂ photolysis [15,19,24,33]. Interestingly, no such steady-state concentration of HO₂•/O₂•- formed at continuous flow injection has been reported to the best of my knowledge. Thus, information regarding the concentration of HO₂•/O₂•- has been limited in previous studies involving the photolysis of TiO_2 .

For an alternative method of determining the $HO_2^{\bullet}/O_2^{\bullet-}$ concentration, Kwon et al. [39,40] developed a kinetic method for the measurement of $HO_2^{\bullet}/O_2^{\bullet-}$ in an aqueous solution. In this method, a calibration procedure using a kinetic half-life technique is established for determining the concentration of $HO_2^{\bullet}/O_2^{\bullet-}$ as produced in the UV/H_2O_2 process. The kinetic method has shown high sensitivity with a simple calibration system

In this study, the steady-state concentration of $HO_2^{\bullet}/O_2^{\bullet-}$ in an illuminated TiO_2 film using the kinetic method is quantitatively determined. To investigate the generation and deactivation of $HO_2^{\bullet}/O_2^{\bullet-}$ in the photolysis of TiO_2 , various effects of the pH using anion buffers, dissolved oxygen, and wavelengths are examined. In addition, the effects of hydrogen peroxide and oxalate are examined in the TiO_2 photolysis. In particular, this study is the first report of utilizing the continuous flow injection in the investigation of TiO_2 photocatalytic reactions on the generation and deactivation of $HO_2^{\bullet}/O_2^{\bullet-}$ to my knowledge.

2. Experimental

2.1. Materials

Anatase TiO₂ (particle size-325 mesh, 99+%) was obtained from Aldrich. Ferric ethylenediaminetetra acetate (Fe³⁺-EDTA), sulfuric acid, sodium hydroxide, benzoic acid (BA), sodium oxalate, and 3% H₂O₂ were of reagent grade and were purchased from Sigma-Aldrich. The solution pH was adjusted to the ranges between 5 and 9.5 with a phosphate buffer (Sigma) and a borate buffer (LabChem Inc.) in addition to H₂SO₄ and NaOH. The concentration of the H₂O₂ stock solution was determined through the use of a KMnO₄ titration method prior to use. The working H₂O₂ solution was prepared daily by diluting the H₂O₂ stock solution with the proper level with high-purity deionized (DI) water. O₂ saturation in the DI water was achieved by purging high purity O_2 gas ($\geq 99.995\%$) to dissolve molecular oxygen, and N₂ saturation in the DI water was achieved through the use of high purity N_2 gas (\geq 99.99%) to remove molecular oxygen. All other chemicals were of analytical grade and were used as received. All solutions were made with high-purity (>18 M Ω cm) DI water from the Younglin ultra-purification system (Korea).

2.2. Preparation of the TiO₂-coated quartz coil

 TiO_2 particles were immobilized on the inner surface of a quartz coil (i.d. 1 mm \times length 900 mm; inner surface **area \approx 2800 mm²). The quartz coil was pre-cleaned with 1% nitric acid and washed with pumped DI water by pumping for 2 h at 1.00 mL/min. Two hundred micrograms of TiO_2 was added into 3 mL methanol, and this was stirred with a magnetic stirrer. 0.3 mL TiO_2 suspension was gradually poured into the quartz coil and it was dried at 40 °C. This process was repeated 10 times to achieve an even coating. This coil was subsequently calcined in a furnace at 600 °C for 3 h [41]. Following this, the quartz coil with the immobilized TiO_2 particles was cooled to room temperature in air. X-ray diffraction (XRD) was used to analyze the change of crystalline structure of TiO_2 . Anatase and rutile TiO_2 were both present in the calcined powders, but the main structure was anatase (data not shown).

2.3. $HO_2^{\bullet}/O_2^{\bullet-}$ determination in the photolysis of TiO_2

A schematic diagram for the $HO_2^{\bullet}/O_2^{\bullet-}$ measurement system is shown in Fig. 1. The apparatus and the experimental procedures employed in this study are similar to those of a previous study [39,40] except the TiO_2 particles immobilized on the quartz coil. All solutions were delivered using a peristaltic pump (Ismatec, type ISM 946) with PTFE tubing (Cole-Parmer, i.d. 1.07 mm).

During the measurement of $HO_2^{\bullet}/O_2^{\bullet-}$, DI water was delivered through Port 1 (P1, 0.43 mL/min) with Valve 1 (V1) opened, while Valve 2 (V2) and Valve 3 (V3) were closed. Dissolved oxygen (D0) in the DI water led to the formation of $HO_2^{\bullet}/O_2^{\bullet-}$ in the TiO_2 -coated quartz coil illuminated with a 4-W low pressure Hg lamp (Sankyo Denki Co., Japan). H_2O_2 was added through Port 2 (P2, 0.23 mL/min) and was mixed with a premixed solution containing Fe^{3+} -EDTA (P3, 0.23 mL/min) and BA (P4, 0.23 mL/min). The Fe^{3+} -EDTA was reduced by $HO_2^{\bullet}/O_2^{\bullet-}$ to Fe^{2+} -EDTA with $k_6 = 2 \times 10^6 \, \text{M}^{-1} \, \text{s}^{-1}$.

$$Fe^{3+}$$
-EDTA + $O_2^{\bullet-}(HO_2^{\bullet}) \rightarrow Fe^{2+}$ -EDTA + $O_2(+H^+)$ (VI)

A subsequent Fenton-like reaction between Fe²⁺-EDTA and H_2O_2 (k_7 = $(2\pm1)\times 10^4$ M $^{-1}$ s $^{-1}$) led to the production of the *OH radicals and to the regeneration of Fe³⁺-EDTA.

$$Fe^{2+}$$
-EDTA + $H_2O_2 \rightarrow Fe^{3+}$ -EDTA + $OH^- + {}^{\bullet}OH$ (VII)

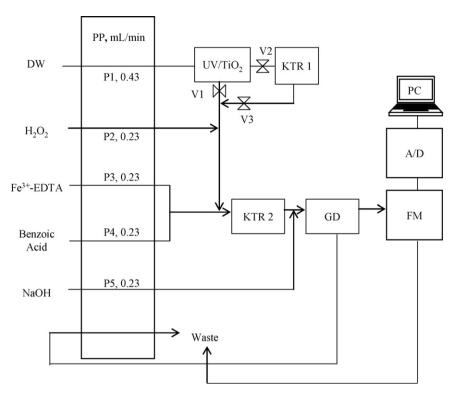


Fig. 1. Schematic diagram and calibration equipment for measuring HO₂*/O₂*-. PP, peristaltic pump; P1, P2, P3, P4, and P5, solution inlet ports; UV/TiO₂, UV light and immobilized TiO₂ quartz reactor; V1, V2, and V3, manually operated valves; KTR 1 and KTR 2, knotted tubing reactors; GD, glass debubbler; A/D, A/D converter; FM, fluorometer; PC, computer.

Following this, the •OH radicals produced OHBA in the presence of BA with a nearly diffusion-controlled rate constant of $k_8 = 4.3 \times 10^9 \,\mathrm{M}^{-1} \,\mathrm{s}^{-1}$ in knotted tubing reactor 2 (KTR 2).

$${}^{\bullet}\text{OH} + \text{BA} \rightarrow \text{OHBA}$$
 (VIII)

0.05N NaOH (P5, 0.23 mL/min) was then added to raise the pH level above 11 at which the fluorescence signal of OHBA could be maintained at a maximum level. The mixed solution occasionally caused the formation of air bubbles in the effluent stream, which was removed by a glass debubbler (GD) prior to the fluorometer (FM) in order to prevent noise signals caused by the air bubbles.

The OHBA fluorescence was then measured with a fluorometer (Waters 474 model) equipped with a 16 μ L flow-through cell with λ_{ex} = 320 nm/ λ_{em} = 400 nm with slit-width of 40 nm. The fluorescence signal was transferred to a data acquisition system, *Auto-chrowin* (Younglin, Korea), consisting of an analog-to-digital converter (A/D) with a personal computer (PC).

2.4. Calibration procedures for HO₂•/O₂•-

The calibration procedure employed in this work is described in detail in the previous study [39,40] except for the immobilized TiO_2 particles in the quartz coil as a self-calibration tool. All working solutions containing 4–8 mM H_2O_2 , 20–40 μM Fe^{3+} -EDTA, 1 mM benzoic acid (BA), and 0.05N NaOH were passed through the appropriate ports under UV with the lamp-off; as well, the base lines were monitored. During calibration of the $\text{HO}_2^{\bullet}/\text{O}_2^{\bullet-}$ concentration, V2 and V3 were open, while V1 was closed, as shown in Fig. 1. In the absence of additives, $\text{HO}_2^{\bullet}/\text{O}_2^{\bullet-}$ in knotted tubing reactor (KTR 1) is disproportionated by the self-reactions according to the empirically observed pH-dependent rate constant, k_{obs} [36]:

$$HO_2^{\bullet} + HO_2^{\bullet} \rightarrow H_2O_2 + O_2$$
 (IX)

$$HO_2^{\bullet} + O_2^{\bullet-} + H_2O \rightarrow H_2O_2 + O_2 + OH^-$$
 (X)

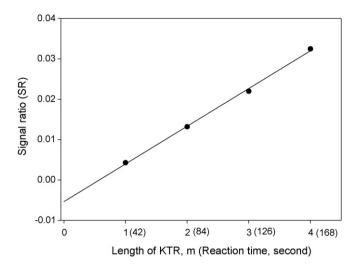
$$O_2^{\bullet -} + O_2^{\bullet -} + 2H_2O \rightarrow H_2O_2 + O_2 + 2OH^-$$
 (XI)

$$k_{\text{obs}} = \frac{k_9 + k_{10}(K_{\text{HO}_2}/[\text{H}^+])}{(1 + K_{\text{HO}_2}/[\text{H}^+])^2}$$
(1)

where at a given pH $k_{\rm obs}$ can be calculated using k_9 = $(8.3 \pm 0.7) \times 10^5 \, {\rm M}^{-1} \, {\rm s}^{-1}$, k_{10} = $(9.76 \pm 0.6) \times 10^7 \, {\rm M}^{-1} \, {\rm s}^{-1}$, k_{11} < $0.3 \, {\rm M}^{-1} \, {\rm s}^{-1}$, and $k_{\rm HO_2} = 1.6 \times 10^{-5} \, {\rm M}^{-1}$ as recommended values [36]. The rate of second-order reaction mainly given by the reactions (IX) and (X) is

$$-\frac{\mathrm{d}[\mathrm{HO}_{2}^{\bullet}/\mathrm{O}_{2}^{\bullet-}]}{\mathrm{d}t} = k_{\mathrm{obs}} \left[\mathrm{HO}_{2}^{\bullet}/\mathrm{O}_{2}^{\bullet-}\right] \tag{2}$$

The solution of Eq. (2) is


$$k_{\text{obs}} \times t = \frac{[\text{HO}_2^{\bullet}/\text{O}_2^{\bullet-}]_0 - [\text{HO}_2^{\bullet}/\text{O}_2^{\bullet-}]_t}{[\text{HO}_2^{\bullet}/\text{O}_2^{\bullet-}]_0 \times [\text{HO}_2^{\bullet}/\text{O}_2^{\bullet-}]_t} \cong SR = \frac{A_0 - A_t}{A_0 A_t}$$
(3)

The signal ratio (SR) can be defined as $(A_0 - A_t)/(A_0 \times A_t)$ where A_0 is the signal intensity of OHBA at KTR 1 of 0 m and A_t is the signal intensity of OHBA at KTR 1 of 1 m, 2 m, 3 m, and 4 m, respectively. Since $[HO_2^{\bullet}/O_2^{\bullet-}]_{t_{1/2}}$ is equal to $[HO_2^{\bullet}/O_2^{\bullet-}]_0/2$ at the half-life $(t_{1/2})$, Eq. (3) becomes

$$[HO_2^{\bullet}/O_2^{\bullet-}]_0 = \frac{1}{k_{\text{obs}} \times t_{1/2}}$$
 (4)

For the second-order reaction, the $t_{1/2}$ is inversely proportional to the initial concentration of $\mathrm{HO_2}^\bullet/\mathrm{O_2}^{\bullet-}$. Thus, the concentration of $\mathrm{HO_2}^\bullet/\mathrm{O_2}^{\bullet-}$ can readily be determined from the $t_{1/2}$ of $\mathrm{HO_2}^\bullet/\mathrm{O_2}^{\bullet-}$ decay in the aqueous solution by calculating k_{obs} at a given pH.

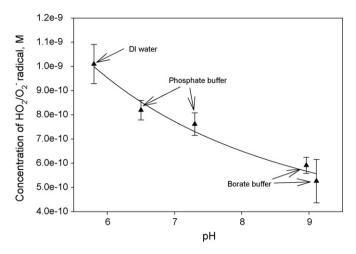
The half-life $(t_{1/2})$ of $HO_2^{\bullet}/O_2^{\bullet-}$ is experimentally measured by plotting the linear relationship of SR vs. the reaction time based on each length of KTR 1. As self-reactions (IX)–(XI) occurred in KTR 1, the concentrations of $HO_2^{\bullet}/O_2^{\bullet-}$ were expected to decrease as the

Fig. 2. Plot of SR vs. reaction time with straight line: pH 5.80, λ = 254 nm, [BA] = 1 mM, [H₂O₂] = 4 mM, [Fe³⁺-EDTA] = 20 μ M, and [NaOH] = 0.05N.

length of KTR 1 increased. These were step-wise, and varied: 0, 1, 2, 3, and 4 m. Hence, the signal intensity of OHBA corresponding to the concentration of $HO_2^{\bullet}/O_2^{\bullet-}$ decreased as the length of KTR 1 increased, and was converted into the reaction time by the constant flow rate through KTR 1 and the constant volumes. A plot of the SR vs. reaction time results in a straight line (Fig. 2) as expected, which produced a pair of slope and intercept at each given pH. From these slopes and intercepts, the half-life $(t_{1/2})$ was derived through the following:

$$SR_{t_{1/2}} = slope \times t_{1/2} + intercept$$
 (5)

Here, $SR_{t_{1/2}}$ is the SR of the half-life, becoming identical with $1/A_0$ at $t_{1/2}$. Consequently, a given concentration of $HO_2^{\bullet}/O_2^{\bullet-}$ was kinetically calculated from Eq. (4), based on the $t_{1/2}$ and calculated $k_{\rm obs}$ at a given pH.


2.5. Measurements of UV light intensity and dissolved oxygen (DO)

The light intensities of UV-C (λ = 254 nm) and UV-A (λ = 365 nm) were measured with ferrioxalate actinometry [42]. The DO was measured with YSI model 58 (USA).

3. Results and discussion

3.1. Effects of the pH and buffer

In the previous studies, Nosaka et al. [15] reported that the concentration of $O_2^{\bullet-}$ was estimated to be approximately 5×10^{-13} M from the CL of luminol dropped on suspended-TiO₂ (15 mg/3.5 mL) during illumination using a 150-W xenon lamp at the wavelength of $387 \pm 11 \text{ nm}$ and under an alkaline solution of pH 11.5 with 0.01 M NaOH. Hirakawa et al. [33] also reported that the concentration of $O_2^{\bullet-}$ in the same apparatus and experimental procedures as those used by Nosaka et al. [15] was estimated to be about $0.69-0.96 \times 10^{-13}$ M using an alkaline solution of pH 11.5 with 0.01 M NaOH. In addition, Hirakawa et al. [24] experimentally reported again that the concentration of ${\rm O_2}^{ullet-}$ using a similar apparatus and experimental procedures, as those of Nosaka et al. [15] and Hirakawa et al. [33], was measured to be approximately $1.2 \times 10^{-6} \,\mathrm{M}$ using an alkaline solution of pH 11.5 with 0.01 M NaOH, which is inconsistent with the previous results. The cause of the inconsistency may have resulted from the different meth-

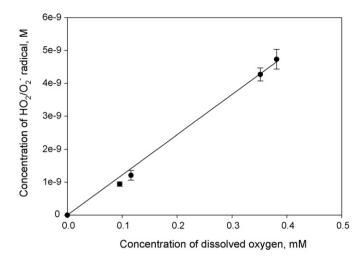


Fig. 3. Dependence of the concentration of $HO_2^{\bullet}/O_2^{\bullet-}$ on increasing of pH in the presence of various buffer ions: $\lambda = 254$ nm, [BA] = 1 mM, [H_2O_2] = 4 mM, [Fe^{3+} -EDTA] = 20 μ M, [NaOH] = 0.05N, [DO] = 0.194 mM, and KTR = 0 m.

ods of determining the amount of $O_2^{\bullet-}$. In other words, the results reported by Nosaka et al. [15] and Hirakawa et al. [33] were estimated by calculating a simple model [43], while the concentrations reported by Hirakawa et al. [24] were based on an experimental result using an apparatus factor or a standard CL intensity [44]. As the difference between their results is very large by an order of magnitude of seven under identical experiment, it is necessary to further investigate the precise amount of $O_2^{\bullet-}$ through intercomparative activities. However, these data are only limited with a strong alkaline solution (pH \approx 11) as pre-addition or post-addition of probe reagents. The present result shows the steady-state concentrations of $HO_2^{\bullet}/O_2^{\bullet-}$ in a continuous flow under a wider range of pH levels.

Fig. 3 shows that the concentration of $\mathrm{HO_2}^{\bullet}/\mathrm{O_2}^{\bullet-}$ in the photolysis of immobilized $\mathrm{TiO_2}$ depends significantly on the solution pH. In this experiment, the solution pH levels were held in a range from 5.6 to 9.1 through the use of phosphate and borate in addition to NaOH. In the presence of buffers, the concentration of $\mathrm{HO_2}^{\bullet}/\mathrm{O_2}^{\bullet-}$ decreased as the pH increased, ranging from $1.01~(\pm0.08)\times10^{-9}~\mathrm{M}$ (pH 5.6, air-equilibrated DI water) to $0.53~(\pm0.09)\times10^{-9}~\mathrm{M}$ (pH 9.1 using borate buffer and NaOH). The concentration of $\mathrm{HO_2}^{\bullet}/\mathrm{O_2}^{\bullet-}$ formed at pH 5.6 is nearly twice as high as that of $\mathrm{HO_2}^{\bullet}/\mathrm{O_2}^{\bullet-}$ formed at pH 9.1. This result indicates that added buffers influence the formation process of $\mathrm{HO_2}^{\bullet}/\mathrm{O_2}^{\bullet-}$ in the photolysis of immobilized $\mathrm{TiO_2}$.

According to Eq. (1), $HO_2^{\bullet}/O_2^{\bullet-}$ at pH 4.8 (p $K_{HO_2}^{\bullet}$) disappears with the highest disproportionation rate, while it slowly disappears as the pH increases [36]. Hence, the concentration of $HO_2^{\bullet}/O_2^{\bullet-}$ at pH 5.6 should be lower than that of HO₂•/O₂•- at pH 9.1 under identical concentrations of HO₂•/O₂•-. However, such a trend was not observed in the presence of buffer ions as shown in Fig. 3. One possible explanation for this result is that the TiO₂ surface caused by illumination immediately becomes more positively charged [45], indicating that the anionic buffer ions can be adsorbed onto the illuminated TiO₂ surface. Even though before illumination the anionic buffer ions cannot be adsorbed easily on the negative TiO2 surface at pH > 7 owing to electrostatic repulsion [46,47], it was experimentally demonstrated that the surface of TiO₂ particles always shifted to more positive values during illumination, irrespective of the initial pH values [45]. For this reason, the available adsorbed O₂ at the air-saturated TiO₂ surface during illumination can be decreased by adsorbed buffer ions on the TiO2 surface, which impedes the electron transfer to O_2 producing $HO_2^{\bullet}/O_2^{\bullet-}$ through the reaction (III).

Fig. 4. Dependence of the steady-state concentration of $HO_2^{\bullet}/O_2^{\bullet-}$ on DO concentration depending on both initial aerated and deaerated conditions: pH 5.80, $\lambda = 254 \, \text{nm}$, $[BA] = 1 \, \text{mM}$, $[H_2O_2] = 4 \, \text{mM}$, $[Fe^{3+}-EDTA] = 20 \, \mu\text{M}$, and [NaOH] = 0.05N.

Another possible explanation for this experimental result is that the decay of $HO_2^{\bullet}/O_2^{\bullet-}$ formed over the heterogeneous surface of the TiO_2 particles may be caused by the rapid reactions (XII) and (XIII) [48] and by the reaction (V) [24].

$$O_2^{\bullet -} + {}^{\bullet}OH \rightarrow O_2 + OH^- \tag{XII}$$

$$HO_2^{\bullet} + {}^{\bullet}OH \rightarrow O_2 + 2H_2O$$
 (XIII)

In addition, no reactions of buffer ions, i.e., borate and/or phosphate ions, with e_{cb}^- and/or h_{vb}^+ was reported so far, and the $HO_2^\bullet/O_2^{\bullet-}$ was mostly unreactive toward buffer ions (<0.02 M^{-1} s⁻¹) [36,48]. Thus, the suppression of $HO_2^\bullet/O_2^{\bullet-}$ in the presence of buffer ions is attributed to the blocking of active sites of the immobilized TiO_2 photocatalyst and to certain processes, that is, the reaction between $HO_2^\bullet/O_2^{\bullet-}$ and $^\bullet OH$ (and/or h_{vb}^{+}).

3.2. Effects of oxygen

Although Nosaka et al. [15] and Hirakawa et al. [24,33] reported a concentration of $O_2^{\bullet-}$ in their studies using a luminol CL technique, they did not show a measured concentration of $O_2^{\bullet-}$ under O_2 - and N_2 -saturated conditions or acidic and/or neutral pHs. Furthermore, they indicated that the CL from luminol dropped on each suspended-TiO₂ can be influenced by interfering effects with another adsorbed species or the trapped h_{vb}^+ (or h_{tr}^+) over the heterogeneous surface of the TiO₂ particle [14–16,19,24,33]. The present result shows the steady-state concentrations of $HO_2^{\bullet}/O_2^{\bullet-}$ on the effects of dissolved O_2 under acidic condition in the photolysis of immobilized TiO₂.

Fig. 4 (data in Table 1) shows the O_2 -dependence of the $HO_2^{\bullet}/O_2^{\bullet-}$ concentration on the photolysis of immobilized TiO_2 at pH 5.80 (pure DI water) without buffer ions and λ = 254 nm

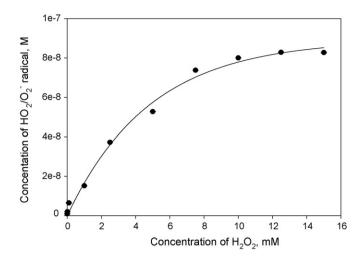
 $\label{eq:theorem} \begin{tabular}{ll} \textbf{Table 1} \\ \textbf{Dependence of the concentration of HO}_2 \bullet / O_2 \bullet ^- \ generated in the photolysis of immobilized TiO_2 particles as function of O_2 concentration^a \\ \end{tabular}$

[DO] _o (mM)	Concentration of $HO_2/O_2^{\bullet-}$ (M)	Standard deviation (\pm)
0	-	-
$0.10 (\pm 0.01)$	0.94×10^{-9}	0.65×10^{-10}
$0.12 (\pm 0.01)$	1.21×10^{-9}	1.5×10^{-10}
$0.35 (\pm 0.01)$	4.27×10^{-9}	2.0×10^{-10}
0.38 (±0.03)	4.73×10^{-9}	3.0×10^{-10}

a All data for Fig. 5.

under three different experimental conditions: air-equilibrated, O_2 -saturated, and N_2 -saturated. The differing conditions for air equilibrium and for O_2 saturation were achieved by mechanical mixing and oxygen gas sparging for $30 \, \text{min}$, in which O_2 concentrations were measured in the ranges of $0.11 \, (\pm 0.01) \, \text{mM}$ to $0.38 \, (\pm 0.03) \, \text{mM}$ (see Table 1). The N_2 saturation for comparison was achieved by nitrogen sparging for $30 \, \text{min}$ to remove dissolved O_2 .

As shown in Fig. 4, the concentrations of $HO_2^{\bullet}/O_2^{\bullet-}$ generated during the illumination of TiO_2 increase as the dissolved O_2 concentration increases, which shows a reasonable linearity within the experimental error. The concentrations of $HO_2^{\bullet}/O_2^{\bullet-}$ are 1.21 $(\pm 0.15) \times 10^{-9}$ M at air equilibrium and $4.73 \, (\pm 0.31) \times 10^{-9}$ M at O_2 saturation, respectively. In contrast, no measurable signal on the $HO_2^{\bullet}/O_2^{\bullet-}$ formation in the N_2 -saturated condition is shown. This result indicates that additional available dissolved O_2 scavenges a greater amount of e_{cb}^- while reducing the chance of the charged pair recombination $(h_{vb}^+-e_{cb}^-)$ [30]. It is evident that the concentration of $HO_2^{\bullet}/O_2^{\bullet-}$ increases as the O_2 concentration increases. Consequently, the present result shows the quantitatively measured concentration of $O_2^{\bullet-}$ depending on O_2 concentrations over the aqueous bulk solution during the illumination of immobilized TiO_2 particles.

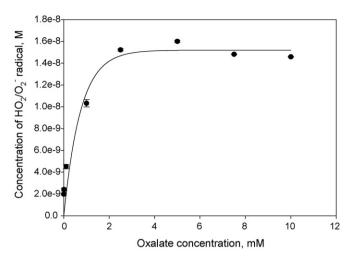

3.3. Effects of wavelengths

The effect of the wavelength on the concentration of $HO_2^{\bullet}/O_2^{\bullet-}$ was examined through the photolysis of immobilized TiO2 particles. This experiment was conducted at pH 5.8 without buffer ions under air-equilibrated condition. The concentration of HO₂•/O₂•- in the photolysis of immobilized TiO₂ shows the dependence of the wavelength (data not shown). The concentration $(1.02 \pm 0.10 \times 10^{-9} \,\mathrm{M}) \,\mathrm{of} \,\mathrm{HO_2}^{\bullet}/\mathrm{O_2}^{\bullet-} \,\mathrm{at} \,\lambda = 254 \,\mathrm{nm} \,\mathrm{is} \,\mathrm{approximately}$ three times higher than that $(0.37 \pm 0.05 \times 10^{-9} \,\mathrm{M})$ of $\mathrm{HO_2}^{\bullet}/\mathrm{O_2}^{\bullet-}$ at λ = 365 nm. This dependence follows the absorption spectrum of TiO₂ as a function of the wavelength, with a threshold corresponding to the band gap energy (>3.2 eV) of the wavelength (\leq 387 nm) [1–3]. TiO₂ generally shows a strong absorbance at measurements approximately below 300 nm, and thereafter the absorbance of TiO₂ is decreased [9,49]. In this study, the light intensities of 254 and 365 nm in the absence of immobilized TiO2 were measured with a quintuplicate average to be 3.27 $(\pm 0.25) \times 10^{-5}$ Einstein/Ls and 1.55 (± 0.29) \times 10⁻⁵ Einstein/L s, respectively. Consequently, the light intensity corresponding to absorbance on the immobilized TiO₂ is reduced by increasing wavelength, and then the concentrations of the $HO_2^{\bullet}/O_2^{\bullet-}$ are decreased.

3.4. Effects of H₂O₂

In previous study, Hirakawa et al. [24] has reported that the concentration of $O_2^{\bullet-}$ was measured by the CL method from luminol dropped on each suspended-TiO₂ in the presence of H_2O_2 (<0.4 mM) under an alkaline pH of 11.5. They observed that the concentration of $O_2^{\bullet-}$ was approximately max. 3.35×10^{-6} M at 0.2 mM H_2O_2 , and on a further addition of H_2O_2 , the concentration of $O_2^{\bullet-}$ decreased and then reached a steady value of nearly 2.3×10^{-6} M at 0.4 mM H_2O_2 . Nevertheless, those studies were suggested that the CL method using luminol could be influenced by interfering effects with other adsorbed species or by the trapped h_{vb}^+ (h_{tr}^+) over the heterogeneous surface of the TiO₂ particle [24]. However, the result of the present study is different from those of Hirakawa et al. [24].

Fig. 5 shows a plot for the steady-state concentration of $HO_2^{\bullet}/O_2^{\bullet-}$ as a function of the concentration of H_2O_2 . The effect of H_2O_2 (p K_a = 11.7) [15] was investigated at λ = 254 nm and pH 5.6 without buffer ions. As shown in Fig. 5, the concentration


Fig. 5. Dependence of the concentration of $HO_2 \cdot /O_2 \cdot ^-$ on increasing H_2O_2 concentration with air-equilibrated system: pH 5.8, λ = 254 nm, [BA] = 1 mM, [H_2O_2] = 4 mM, [Fe^{3+} -EDTA] = 20 μ M, [NaOH] = 0.05N, [DO] = 0.194 mM, and KTR = 0 m.

of $HO_2^{\bullet}/O_2^{\bullet-}$ linearly increases as the concentration of H_2O_2 increases at the initial phase, gradually reaching a constant value at about 10 mM H_2O_2 . This increase of the $HO_2^{\bullet}/O_2^{\bullet-}$ concentration is attributable to the reactions as follows [9,24,36,48]:

$$H_2O_2 + e_{ch}^- \rightarrow {}^{\bullet}OH + OH^-$$
 (XIV)

$$H_2O_2 + {}^{\bullet}OH \rightarrow HO_2{}^{\bullet} + H_2O$$
 (XV)

As the molecular ratio $[HO_2^-]/[H_2O_2]$ is 1.58×10^{-6} in the acidic aqueous solution of pH 5.6, HO₂⁻ is likely to be negligible in our study. Although H_2O_2 at $\lambda = 254$ nm is photo-decomposed to produce •OH [39], the direct decomposition of H_2O_2 at $\lambda = 254$ nm may be negligible due to that the immobilization of TiO₂ particles on the inner surface of the quartz coil blocks the light. Hence, H₂O₂ reacts with e_{ch}^- to produce •OH (reaction (XIV), $k_{14} = 1.1 \times 10^{10} \, \text{M}^{-1} \, \text{s}^{-1}$) [48]. Since the surface-bound OH radicals are unlikely to migrate far from the TiO₂ surface [19,34], most of the OH radicals at the surface of TiO₂ react with H₂O₂ to produce HO₂• (reaction (XV), $k_{15} = 2.7 \times 10^7 \,\mathrm{M}^{-1} \,\mathrm{s}^{-1}$) [48]. However, H_2O_2 to form $HO_2^{\bullet}/O_2^{\bullet-}$ at low H_2O_2 concentration would be competed with O_2 (~ 0.11 mM) in terms of ecb-. This is shown in Table 2, in which, with the addition of 0.1 mM H_2O_2 , the concentration of $HO_2^{\bullet}/O_2^{\bullet-}$ in the absence of O2 is lower by approximately 27 times than that of $HO_2^{\bullet}/O_2^{\bullet-}$ in the presence of O_2 . Considering the kinetic ratio (=1.9) of $k_3([O_2] = 0.11 \text{ mM})$ to $k_{14}([H_2O_2] = 0.10 \text{ mM})$, approximately 66% of e_{cb}⁻ reacts with O₂, whereas approximately 34% of e_{cb}⁻ reacts with H_2O_2 . Thus, reaction (III) $(O_2 + e_{cb}^-)$ is dominant at a low concentration of H₂O₂. However, based on the kinetic ratio as mentioned above, 50% of e_{cb}^- at 0.19 mM H_2O_2 can react with H_2O_2 . With increasing H_2O_2 (>0.19 mM), the reaction (XIV) $(H_2O_2 + e_{cb}^-)$ is gradually dominant, and then most of the *OH radicals generated at the surface of TiO₂ react with H₂O₂ to produce HO₂• (reaction

Fig. 6. Dependence of the concentration of $HO_2^{\bullet}/O_2^{\bullet-}$ on increasing oxalate concentration: pH 5.8, λ = 254 nm, [BA] = 1 mM, [H₂O₂] = 4 mM, [Fe³⁺-EDTA] = 20 μ M, [NaOH] = 0.05N, [DO] = 0.194 mM, and KTR = 0 m.

(XV)). Furthermore, after adding 1 mM H_2O_2 the concentration of $HO_2^{\bullet}/O_2^{\bullet-}$ under N_2 purging is similar to that of $HO_2^{\bullet}/O_2^{\bullet-}$ in the air equilibrium as shown in Table 2. From these observations, H_2O_2 mainly serves as an e_{cb}^- acceptor that produces further $HO_2^{\bullet}/O_2^{\bullet-}$ concentration.

3.5. Effect of oxalate

Fig. 6 shows a plot for the concentration of $HO_2^{\bullet}/O_2^{\bullet-}$ as a function of the concentration of oxalate in the photolysis of immobilized TiO_2 . The effect of oxalate was examined at $\lambda=254\,\mathrm{nm}$ and pH 5.6 controlled with a small NaOH. As shown in Fig. 6, the concentration of $HO_2^{\bullet}/O_2^{\bullet-}$ linearly increases as the concentration of oxalate at initial step increases. It then reaches its maximum value of 2 mM oxalate. The increase in the $HO_2^{\bullet}/O_2^{\bullet-}$ concentration as the amount of oxalate increases is attributable to the oxidation of $(COO)_2^{2-}$ by h_{vb}^{+} , as described by the following reactions [50,51]:

$$(COO)_2^{2-} + h_{vb}^{+} \rightarrow ^{-}OOC - COO^{\bullet}$$
 (XVI)

$$^{-}OOC-COO_{2} \rightarrow CO_{2} -^{-}+CO_{2}$$
 (XVII)

$$CO_2^{\bullet -} + O_2 \rightarrow O_2^{\bullet -} + CO_2 \tag{XVIII}$$

$$e_{cb}^{-} + O_2 \rightarrow O_2^{\bullet -} \tag{XIX}$$

Oxalate (p K_{a1} = 1.23 and p K_{a2} = 4.19) [52], which is adsorbed onto the positively charged TiO₂ surface at pH 5.6, is directly oxidized by h_{vb}^+ (reaction (XVI)) [50,53]. In the valence band, the h_{vb}^+ -mediated oxidation of oxalate leads to the formation of HO₂•/O₂•- with the involvement of O₂. As the molecular ratio {(COO)₂²⁻}/{COOH-(COO)^-} is 0.96 in the acidic solution of pH 5.6, the effect of COOH-(COO)^- is likely to be negligible in the present study. Subsequently, the -OOC-COO• radical decomposes

Table 2 Effects of H_2O_2 addition depending on the presence and absence O_2 in the photolysis of immobilized TiO_2 particles

Condition	[HO ₂ /O ₂ •-] (M)		
	TiO ₂ /UV/H ₂ O ₂ at air equilibrium ^a	TiO ₂ /UV/H ₂ O ₂ at N ₂ purging ^b	UV/H ₂ O ₂ at air equilibrium ^c
pH 5.6; [H ₂ O ₂] = 0.1 mM	6.51×10^{-9}	2.45×10^{-10}	-
pH 5.6; $[H_2O_2] = 1 \text{ mM}$	1.52×10^{-8}	1.48×10^{-8}	-
pH 6.11; $[H_2O_2] = 4 \text{ mM}$	-	-	5.19×10^{-9}

 $^{^{}a}$ [DO] = 0.1-0.12 mM.

 $^{^{}b}$ [DO] \approx 0 mM.

c Ref. [39].

into the CO₂•- radical (reaction (XVII)). Following this, CO₂•- radical reacts with residual O₂ (k_{18} = 2–4.2 × 10⁹ M⁻¹ s⁻¹) [54], giving O₂•-. Although a conduction band electron, e_{cb}-, competes with O₂, O₂•- formed by reaction (III) is a minor portion and can thus be considered insignificant. As oxalate has negligible reactivity with HO₂•/O₂•-, k = 0.2 M⁻¹ s⁻¹ [36], the concentration of HO₂•/O₂•- with the addition of 2 mM oxalate is nearly 10 times higher than that of HO₂•/O₂•- in the absence of oxalate. This result has not been studied thus far. Consequently, the addition of oxalate as a hole scavenger increases the concentration of HO₂•/O₂•- in the photolysis of immobilized TiO₂.

4. Conclusions

In this study, the steady-state concentrations of HO₂•/O₂•formed from the photocatalysis of immobilized TiO₂ were investigated newly over various factors by using the kinetic method with a continuous flow injection. The concentration of $HO_2^{\bullet}/O_2^{\bullet-}$ increased as the O2 concentrations increased in the absence of buffers. This indicates that, during photocatalytic reactions, photo-generated electron is mainly trapped by adsorbed oxygen molecules resulting in the formation of $HO_2^{\bullet}/O_2^{\bullet-}$. However, the concentration of HO2*/O2*- gradually decreased as the pH increased in the presence of buffers, which was restricted by the available photo-active sites on the immobilized TiO₂ surface. Furthermore, the concentration of $HO_2^{\bullet}/O_2^{\bullet-}$ increased with the increasing concentrations of H2O2 and oxalate, and then on the further addition of H₂O₂ (>10 mM) and oxalate (>2 mM), the concentration of HO₂•/O₂•- reached steady values. These results show that HO₂•/O₂•- formed on TiO₂ photocatalysis migrates into the water bulk.

Acknowledgement

This subject is supported by Korea Ministry of Environment as "The Eco-technopia 21 project."

References

- [1] M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95 (1995) 69.
- [2] A. Mills, S.L. Hunte, J. Photochem. Photobiol. A 108 (1997) 1.
- [3] A.L. Linsebigler, G. Lu, J.T. Yates Jr., Chem. Rev. 95 (1995) 735.
- [4] H. Van Damme, W. Keith Hall, J. Am. Chem. Soc. 101 (1979) 4373.
- [5] C.D. Jaeger, A.J. Bard, J. Phys. Chem. 83 (1979) 3146.
- [6] M. Anpo, T. Shima, S. Kodama, Y. Kubokawa, J. Phys. Chem. 91 (1987) 4305.
- [7] J. Cunningham, G. Al-Sayyed, J. Chem. Soc., Faraday Trans. 86 (1990) 3935.
- [8] D. Lawless, N. Serpone, D. Meisel, J. Phys. Chem. 95 (1991) 5166.
- [9] L. Sun, J.R. Bolton, J. Phys. Chem. 100 (1996) 4127.
- [10] P.F. Schwarz, N.J. Turro, S.H. Bossmann, A.M. Braun, A.A. Abdel Wahab, H. Dűrr, J. Phys. Chem. B 101 (1997) 7127.
- [11] A.V. Taborda, M.A. Brusa, A. Grela, Appl. Catal. A: General 208 (2001) 419.
- [12] R.F. Howe, M. Grätzel, J. Phys. Chem. 91 (1987) 3906.
- [13] Y. Nosaka, K. Koenuma, K. Ushida, A. Kira, Langmuir 12 (1996) 736.
- [14] Y. Nosaka, H. Fukuyama, Chem. Lett. 383 (1997).
- [15] Y. Nosaka, Y. Yamashita, H. Fukuyama, J. Phys. Chem. B 101 (1997) 5822.
- [16] K.-I. Ishibashi, Y. Nosaka, K. Hashimoto, A. Fujishima, J. Phys. Chem. B 102 (1998) 2117.

- [17] R. Konaka, E. Kasahara, W.C. Dunlap, Y. Yamamoto, K.C. Chien, M. Inoue, Free Radic. Biol. Med. 27 (1999) 294.
- [18] T. Tatsuma, S.-I. Tachibana, T. Miwa, D.A. Tryk, A. Fujishima, J. Phys. Chem. B 103 (1999) 8033.
- [19] K.-I. Ishibashi, A. Fujishima, T. Watanabe, K. Hashimoto, J. Phys. Chem. B 104 (2000) 4934.
- [20] T. Tatsuma, S.-I. Tachibana, A. Fujishima, J. Phys. Chem. B 105 (2001) 6987.
- [21] S. Xu, J. Shen, S. Chen, M. Zhang, T. Shen, J. Photochem. Photobiol. B 67 (2002) 64.
- [22] T.A. Konovalova, J. Lawrence, L.D. Kispert, J. Photochem. Photobiol. A 162 (2004)
- [23] C. Kormann, D.W. Bahnemann, M.R. Hoffmann, Environ. Sci. Technol. 25 (1991) 494.
- [24] T. Hirakawa, Y. Nosaka, Langmuir 18 (2002) 3247.
- [25] D. Chatterjee, A. Mahata, Appl. Catal. B: Environ. 33 (2001) 119.
- [26] D. Chatterjee, A. Mahata, J. Photochem. Photobiol. A 153 (2002) 199.
- [27] D. Chatterjee, A. Mahata, J. Photochem. Photobiol. A 165 (2004) 19.
- [28] P. Raja, A. Bozzi, H. Mansilla, J. Kiwi, J. Photochem. Photobiol. A 169 (2004)269.
- [29] G. Lu, A. Linsebigler, J.T. Yates Jr., J. Phys. Chem. 99 (1995) 7626.
- [30] H. Gerisher, A. Heller, J. Phys. Chem. 95 (1991) 5261.
- [31] C.-M. Wang, A. Heller, H. Gerischer, J. Am. Chem. Soc. 114 (1992) 5230.
- [32] J. Fan, J.T. Yates Jr., J. Am. Chem. Soc. 118 (1996) 4686.
- [33] T. Hirakawa, H. Kominami, B. Ohtani, Y. Nosaka, J. Phys. Chem. B 105 (2001) 6993.
- [34] S. Upadhya, D.F. Ollis, J. Phys. Chem. B 101 (1997) 2625.
- [35] H. Courbon, M. Formenti, P. Pichat, J. Phys. Chem. 81 (1977) 550.
- [36] B.H.I. Bielski, D.E. Cabelli, R.L. Arudi, A.B. Ross, J. Phys. Chem. Ref. Data 14 (1985).
- [37] J.M. Coronado, A.J. Maira, A. Martínez-Arias, J.C. Conesa, J. Soria, J. Photochem. Photobiol. A 150 (2002) 213.
- [38] J. Yu, J. Chen, C. Li, X. Wang, B. Zhang, H. Ding, J. Phys. Chem. B 108 (2004) 2781.
- [39] B.G. Kwon, J.H. Lee, Anal. Chem. 76 (2004) 6359.
- [40] B.G. Kwon, J.H. Lee, Bull. Korean Chem. Soc. 27 (2006) 1785.
- [41] Y. Zhu, L. Zhang, C. Gao, L. Cao, J. Mater. Sci. 35 (2000) 4049.
- [42] C.G. Hatchard, C.A. Parker, Proc. R. Soc. A235 (1956) 518.
- [43] Luminol CL reactions observed by Nosaka et al. [15] and Hirakawa et al. [33] involve the following two reactions, (R1) and (R2), where L• and L are luminol radical and two-electron-oxidized luminol, respectively. (R1)O₂•--L•-+H⁺-→LO₂H⁻-→AP⁺; (R2)HO₂-+L→LO₂H⁻-→AP⁺; The reaction product, LO₂H⁻, rapidly decomposes into the excited state of 2₂ aminophthalate (AP⁺) which emits the light at around 425 nm. Since the CL intensity is proportional to the formation rate of LO₂H⁻-, it is proportional to the concentration products [O₂•⁻][L•⁻] and [HO₂-□][L] for (R1) and (R2), respectively. Both reactions contribute to the total CL intensity as expressed by the following Eq. (1), where k_{R1} and k_{R2} are the rate constants of the corresponding reactions and Φ is the quantum yield for (R2). (Eq. (1)) d[AP⁺]/dt = k_{R1}[O₂•⁻][L•⁻] + Φk_{R2}[HO₂-□][L]; Thus, from the Eq. (1) amount of O₂•⁻ can be estimated. The details of the analysis method have been described in the previous papers [15,33].
- [44] In the luminol CL method, the apparatus factor or a standard CL intensity is required because a large amount of L produced by photocatalytic oxidation of luminol reacts with OH⁻ ions at pH 11.0 and then emits the visible light. Thus, the concentration of $O_2^{\bullet-}$ can be estimated by comparing the CL intensity from the apparatus factor or a standard CL intensity with that emitted from the reaction between photo-generated $O_2^{\bullet-}$ and luminol [16,19].
- [45] J. Zhao, H. Hidaka, A. Takamura, E. Pelizzetti, N. Serpone, Langmuir 9 (1993) 1646.
- [46] M. Abdullah, G.K.-C. Low, R.W. Mattews, J. Phys. Chem. 94 (1990) 6820.
- [47] G.A. Parks, Chem. Rev. 65 (1965) 177.
- [48] G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross, J. Phys. Chem. Ref. Data 17 (1988).
- [49] M. Anpo, Catal. Surv. Jpn. 1 (1997) 169.
- 50] Y. Mao, C. Schöneich, K.-D. Asmus, J. Phys. Chem. 95 (1991) 10080.
- [51] A.J. Hoffmann, E.R. Carraway, M.R. Hoffmann, Environ. Sci. Technol. 28 (1994) 776.
- [52] CRC Handbook of Chemistry and Physics, Editor-in-Chief: David R. Lide, Ph.D. (Former Director, Standard Reference Data National Institute of Standards and Technology), 80th Edition (1999) 8–46.
- [53] E.R. Carraway, A.J. Hoffman, M.R. Hoffman, Environ. Sci. Technol. 28 (1994) 786.
- [54] P. Neta, R.E. Huie, A.B. Ross, J. Phys. Chem. Ref. Data 17 (1988) 1050.